
1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Directed Acyclic Graphs
Lecture 26 (Graphs 5)

Goals of Today

Today, to practice our problem solving skills, we’ll work through some very
challenging A-level problems using the tools we’ve already learned about.

Will focus on graphs, but the ideas today are more general.

Graph Problems So Far

Problem Problem Description Solution Efficiency

paths Find a path from s to every
reachable vertex.

DepthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

shortest paths Find the shortest path from s to
every reachable vertex.

BreadthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

shortest
weighted paths

Find the shortest path,
considering weights, from s to
every reachable vertex.

DijkstrasSP.java
Demo

O(E log V) time
Θ(V) space

shortest
weighted path

Find the shortest path, consider
weights, from s to some target
vertex

A*: Same as Dijkstra’s
but with h(v, goal)
added to priority of
each vertex.
Demo

Time depends on
heuristic.

Θ(V) space

https://docs.google.com/presentation/d/1mr841rMgVAffqi-TfL--gZPmEjAM5rpBW7MzrmJPuaU/edit#slide=id.g25f3bf5f9c7_0_1020
https://docs.google.com/presentation/d/1mHaFA7w9G-wsEPLu-HSpqjm3EYAhDbhrXdcWUJdn4N8/edit#slide=id.g239d0124e83_0_0
https://docs.google.com/presentation/d/1UHAU4IgEPYO3AJKYANd8XN8VDw5KZlt86HMLm9mJyyY/edit#slide=id.g50bd245468_0_1223
https://docs.google.com/presentation/d/1UHAU4IgEPYO3AJKYANd8XN8VDw5KZlt86HMLm9mJyyY/edit#slide=id.g50bd245468_0_1100

Graph Problems So Far

Problem Problem Description Solution Efficiency

minimum
spanning tree

Find a minimum spanning tree. LazyPrimMST.java
Demo

O(???) time
Θ(???) space

minimum
spanning tree

Find a minimum spanning tree. PrimMST.java
Demo

O(E log V) time
Θ(V) space

minimum
spanning tree

Find a minimum spanning tree. KruskalMST.java
Demo

O(E log E) time
Θ(E) space

https://docs.google.com/presentation/d/102XAttadgxd3dW78_ymTpA2mK4xT5pPDz6DDShafJUg/edit#slide=id.g25f5241fa9b_0_10
https://docs.google.com/presentation/d/102XAttadgxd3dW78_ymTpA2mK4xT5pPDz6DDShafJUg/edit#slide=id.g25f5241fa9b_0_545
https://docs.google.com/presentation/d/102XAttadgxd3dW78_ymTpA2mK4xT5pPDz6DDShafJUg/edit#slide=id.g25f5241fa9b_0_1437

Lecture 26, CS61B, Spring 2024

Topological Sorting
Shortest Paths on DAGs
Longest Paths
Reductions

• Definition
• Reduction to 3SAT (Optional

CS170 Preview)
Topological
Sorting

Topological Sort

Suppose we have tasks A through H, where an arrow from v to w indicates that v
must happen before w.
● What algorithm do we use to find a valid ordering for these tasks?
● Valid orderings include: [A, C, B, D, F, E, H, G], [C, A, D, F, B, E, G, H], …

B

C

D

E

F

G

H

A

Solution (Spoiler Alert)

Perform a DFS traversal from every vertex with indegree 0, NOT clearing markings
in between traversals.
● Record DFS postorder in a list.
● Topological ordering is given by the reverse of that list (reverse postorder).

B

C

D

E

F

G

H

A

Topological Sort (Demo 1/2)

A

B

C

D

E

F

G

H
Postorder: []
Call stack: A

*
A

B

C

D

E

F

G

H
Postorder: []
Call stack: A→B

*

A

B

C

D

E

F

G

H
Postorder: []
Call stack: A→B→E

*

A

B

C

D

E

F

G

H
Postorder: [H]
Call stack: A→B→E→H

*

A

B

C

D

E

F

G

H

Postorder: [H, E]
Call stack: A→B→E

*

A

B

C

D

E

F

G

H

Postorder: [H, E, B]
Call stack: A→B

*

A

B

C

D

E

F

G

H

*

Postorder: [H, E, B]
Call stack: A

A

B

C

D

E

F

G

H

*

Postorder: [H, E, B, D]
Call stack: A→D

Topological Sort (Demo 2/2)

A

B

C

D

E

F

G

H

Postorder: [H, E, B, D]
Call stack: A→D

*
A

B

C

D

E

F

G

H

Postorder: [H, E, B, D, A]
Call stack: A

*
A

B

C

D

E

F

G

H

Postorder: [H, E, B, D, A]
Call stack: C

*

*A

B

C

D

E

F

G

H

Postorder: [H, E, B, D, A]
Call stack: C→F

*

A

B

C

D

E

F

G

H
Postorder: [H, E, B, D, A, G]
Call stack: C→F→G

*A

B

C

D

E

F

G

H
Postorder: [H, E, B, D, A, G, F]
Call stack: C→F

*

A

B

C

D

E

F

G

H
Postorder: [H, E, B, D, A, G, F, C]
Call stack: C

Solution (Spoiler Alert)

Perform a DFS traversal from every vertex with indegree 0, NOT clearing markings
in between traversals.
● Record DFS postorder in a list: [H, E, B, D, A, G, F, C]
● Topological ordering is given by the reverse of that list (reverse postorder):

○ [C, F, G, A, D, B, E, H]

B

C

D

E

F

G

H

A

Topological Sort

The reason it’s called topological sort: Can think of this process as sorting our
nodes so they appear in an order consistent with edges, e.g. [C, F, G, A, D, B, E, H]
● When nodes are sorted in diagram, arrows all point rightwards.

A BC D EF G H

A

B

C

D

E

F

G

H

Depth First Search

Be aware, that when people say “Depth First Search”, they sometimes mean with
restarts, and they sometimes mean without.

For example, when we did DepthFirstPaths for reachability, we did not restart.

For Topological Sort, we restarted from every vertex with indegree 0.

Question

What is the runtime to find all vertices of indegree 0?
● Interesting thing I did not tell you: You don’t have to.

Another better topological sort algorithm:
● Run DFS from an arbitrary vertex.
● If not all marked, pick an unmarked vertex and do it again.
● Repeat until done.

Give a topological ordering for the graph below (a.k.a. topological sort).

Test Your Understanding

B

D

C

E

FA
s 4

1

2

2
6

1

1

3

Give a topological ordering for the graph below (a.k.a. topological sort)
● A, D, B, C, E, F (because DFS postorder was FECBDA)

B

D

C

E

FA
s 4

1

2

2
6

1

1

3

Test Your Understanding

BD C E FAs 42 6 11

1

3

1

Recall that we can
think of topological
sort as an ordering of
“tasks”.

Directed Acyclic Graphs

A topological sort only exists if the graph is a directed acyclic graph (DAG).
● For the graph below, there is NO possible ordering where all arrows are

respected.

DAGs appear in many real world applications, and there are many graph
algorithms that only work on DAGs.

A

B

C

D

E

F

G

H

Graph Problems

Problem Problem Description Solution Efficiency

topological sort Find an ordering of vertices that
respects edges of our DAG.

Demo
Topological.java

O(V+E) time
Θ(V) space

Lecture 26, CS61B, Spring 2024

Topological Sorting
Shortest Paths on DAGs
Longest Paths
Reductions

• Definition
• Reduction to 3SAT (Optional

CS170 Preview)
Shortest Paths on
DAGs

Shortest Paths Warmup

What is the shortest paths tree for the graph below, using s as the source?
In what order will Dijkstra’s algorithm visit the vertices?

Graph from Algorithms, by Vazirani/Papadimitriou

B

D

C

E

FA
s 4

1

2

2
6

1

1

3

Shortest Paths Warmup

What is the shortest paths tree for the graph below, using s as the source?
In what order will Dijkstra’s algorithm visit the vertices?
● A, B, D, E, F, C

B

D

C

E

FA
s 4

1

2

2

1

1

3

1

2 5

7

6

6

Shortest Paths Warmup

If we allow negative edges, Dijkstra’s algorithm can fail.
● For example, below we see Dijkstra’s just before vertex C is visited.

B

D

C

E

FA
s 25

1

1

1
6

1

-20

1

1

1 2

7

3

Shortest Paths Warmup

If we allow negative edges, Dijkstra’s algorithm can fail.
● For example, below we see Dijkstra’s just before vertex C is visited.
● Relaxation on E succeeds, but distance to F will never be updated.

B

D

C

E

FA
s 25

1

1

1
6

1

-20

1

1

1 2

7

3

-13

Shortest Paths Warmup

If we allow negative edges, Dijkstra’s algorithm can fail.
● For example, below we see Dijkstra’s just before vertex C is visited.
● Relaxation on E succeeds, but distance to F will never be updated.

B

D

C

E

FA
s 25

1

1

1
6

1

-20

1

1

1

7

3

-13

distTo is wrong!

Challenge

Try to come up with an algorithm for shortest paths on a DAG that works even if
there are negative edges.
● Hint: You should still use the “relax” operation as a basic building block.

B

D

C

E

FA
s 25

1

1

1
6

1

-20

1

∞

∞ ∞

∞

∞

Challenge

Try to come up with an algorithm for shortest paths on a DAG that works even if
there are negative edges.
● Hint: You should still use the “relax” operation as a basic building block.

One simple idea: Visit vertices in topological order.
● On each visit, relax all outgoing edges.
● Each vertex is visited only when all possible info about it has been used!

B

D

C

E

FA
s 25

1

1

1
6

1

-20

1

∞

∞ ∞

∞

∞

The DAG SPT Algorithm: Relax in Topological Order

First: We have to find a topological order, e.g. ADBCEF. Runtime is O(V + E).

BD C E FAs 11 6 1-20

1

1

1

B

D

C

E

FA
s 25

1

1

1
6

1

-20

1

∞

∞ ∞

∞

∞

The DAG SPT Algorithm: Relax in Topological Order

Second: We have to visit all the vertices in topological order, relaxing all edges as
we go. Let’s see a demo.

BD C E FAs 11 6 1-20

1

1

1

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B ∞ -
C ∞ -
D ∞ -
E ∞ -
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

Fringe: [A, D, B, C, E, F]

0 ∞ ∞ ∞ ∞ ∞

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B ∞ -
C ∞ -
D ∞ -
E ∞ -
F ∞ -

BD C D FAs 11 6 1-20

1

1

1

0 ∞ ∞ ∞ ∞ ∞

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C ∞ -
D 1 A
E ∞ -
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 ∞ ∞ ∞ ∞ ∞1 1

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C ∞ -
D 1 A
E ∞ -
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 ∞ ∞ ∞1 1

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C ∞ -
D 1 A
E 2 D
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 ∞ ∞ ∞1 1
2

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C ∞ -
D 1 A
E 2 D
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 ∞ ∞1 1 2

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C 7 B
D 1 A
E 2 D
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 ∞ ∞1 1 7 2

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C 7 B
D 1 A
E 2 D
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 ∞1 1 7 2

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C 7 B
D 1 A
E -13 C
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 ∞1 1 7 2
-13 8

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C 7 B
D 1 A
E -13 C
F ∞ -

BD C E FAs 11 6 1-20

1

1

1

0 1 1 7 -13 8

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C 7 B
D 1 A
E -13 C
F -12 E

BD C E FAs 11 6 1-20

1

1

1

0 ∞1 1 7 -13
-12

Fringe: [A, D, B, C, E, F]

DAG SPT Algorithm

Visit vertices in topological order.
● When we visit a vertex: relax all of its going edges.

 distTo edgeTo
A 0 -
B 1 A
C 7 B
D 1 A
E -13 C
F -12 E

BD C E FAs 11 6 1-20

1

1

1

0 1 1 7 -13 -12

Fringe: [A, D, B, C, E, F]

The DAG SPT Algorithm: Relax in Topological Order

Second: We have to visit all the vertices in topological order, relaxing all edges as
we go.
● Runtime for step 2 is also O(V + E).

Occasional question: why isn’t it O(V*E)? We’re relaxing all edges from each vertex.

● Keep in mind that E is the total number of edges in the entire graph, not the number of edges per vertex.
Example: for the graph below, E = 8.

BD C E FAs 11 6 1-20

1

1

1

Graph Problems

Problem Problem Description Solution Efficiency

topological sort Find an ordering of vertices that
respects edges of our DAG.

Demo
Code: Topological.java

O(V+E) time
Θ(V) space

DAG shortest
paths

Find a shortest paths tree on a
DAG.

Demo
Code: AcyclicSP.java

O(V+E) time
Θ(V) space

Note: The DAG shortest paths solution uses the topological sort solution as a
subroutine.

https://algs4.cs.princeton.edu/44sp/AcyclicSP.java

Lecture 26, CS61B, Spring 2024

Topological Sorting
Shortest Paths on DAGs
Longest Paths
Reductions

• Definition
• Reduction to 3SAT (Optional

CS170 Preview)Longest Paths

The Longest Paths Problem

Consider the problem of finding the longest path tree (LPT) from s to every other
vertex. The path must be simple (no cycles!).

B

C

D

E

F

G
As

5
2

1

15

3

2
11

5

1

1

41

Two potentially interesting exercises after lecture:
● Find an example where the obvious algorithm (Dijkstra’s but pick the biggest edge first) fails.
● Figure out: Is the longest path to every other vertex always a tree (i.e. does an LPT exist for all graphs)?

The Longest Paths Problem

Consider the problem of finding the longest path tree (LPT) from s to every other
vertex. The path must be simple (no cycles!).

B

C

D

E

F

G
As

5
2

1

15

3

2
11

5

1

1

41

2 13

7

15

22

20

Some surprising facts:
● Best known algorithm

is exponential
(extremely bad).

● Perhaps the most
important unsolved
problem in
mathematics.

The Longest Paths Problem on DAGs

Difficult challenge for you.
● Solve the LPT problem on a directed acyclic graph.
● Algorithm must be O(E + V) runtime.

B

D

C

E

FA
s 4

1

2

2
6

1

1

3

6

2

12

14

13

0

The Longest Paths Problem on DAGs

DAG LPT solution for graph G:
● Form a new copy of the graph G’ with signs of all edge weights flipped.
● Run DAGSPT on G’ yielding result X.
● Flip signs of all values in X.distTo. X.edgeTo is already correct.

B

D

C

E

FA
s -4

-1

-2

-2
-6

-1

-1

-3

-6

-2

-12

-14

-13

0

The Longest Paths Problem on DAGs

DAG LPT solution for graph G:
● Form a new copy of the graph G’ with signs of all edge weights flipped.
● Run DAGSPT on G’ yielding result X.
● Flip signs of all values in X.distTo. X.edgeTo is already correct.

B

D

C

E

FA
s

6

2

12

14

13

0

A Note on “Mathematical Maturity”

If you have a very high degree of so-called “mathematical maturity”, this algorithm
should seem plainly correct.

There’s no real need to prove anything or show demos.
● We know DAG SPT works on graphs with negative edge weights.
● We also know that -(-a + -b + -c + -d) = a + b + c + d.

Part of what you’re learning in your intense technical education here at Berkeley is
mathematical maturity. Hasn’t been a major focus in 61B, but will be in other
courses like 16A, 16B, 70, 170, ...

https://en.wikipedia.org/wiki/Mathematical_maturity

Highly Recommended Exercise For Later

Play around with the longest paths problem and convince yourself that it is
actually very hard.
● Try to develop an intuition for why it is hard. Even better if you try to put it into

english.
● Try searching the internet for “why longest paths hard” or similar if you’re

having trouble really pinning down what’s so hard about it.

Graph Problems

Problem Problem Description Solution Efficiency

topological sort Find an ordering of vertices that
respects edges of our DAG.

Demo
Code: Topological.java

O(V+E) time
Θ(V) space

DAG shortest
paths

Find a shortest paths tree on a
DAG.

Demo
Code: AcyclicSP.java

O(V+E) time
Θ(V) space

longest paths Find a longest paths tree on a
graph.

No known efficient
solution.

O(???) time
O(???) space

DAG longest
paths

Find a longest paths tree on a
DAG.

Flip signs, run DAG
SPT, flip signs again.

O(V+E) time
Θ(V) space

https://algs4.cs.princeton.edu/44sp/AcyclicSP.java

Lecture 26, CS61B, Spring 2024

Topological Sorting
Shortest Paths on DAGs
Longest Paths
Reductions

• Definition
• Reduction to 3SAT (Optional

CS170 Preview)
Reductions:
Definition

DAG Longest Paths

The problem solving we just used probably felt a little different than usual:
● Given a graph G, we created a new graph G’ and fed it to a related (but

different) algorithm, and then interpreted the result.

G

DAG-LPT

Preprocess DAG-SPT

G’

SPT of G’

Postprocess

LPT of G

Reduction

This process is known as reduction.
● Since DAG-SPT can be used to solve DAG-LPT, we say that “DAG-LPT reduces

to DAG-SPT”.

G

DAG-LPT

Preprocess DAG-SPT

G’

SPT of G’

Postprocess

LPT of G

Reduction Analogy

This process is known as reduction.
● Since DAG-SPT can be used to solve DAG-LPT, we say that “DAG-LPT reduces

to DAG-SPT”.

As a real-world analog, suppose we want to climb a hill. There are many ways to
do this:
● “Climbing a hill” reduces to “riding a ski lift.”
● “Climbing a hill” reduces to “being shot out of a cannon.”
● “Climbing a hill” reduces to “riding a bike up the hill.”

Reduction Definition (Informal)

This process is known as reduction.
● Since DAG-SPT can be used to DAG-LPT, we say that “DAG-LPT reduces to

DAG-SPT”.

Algorithms by Dasgupta, Papadimitriou, and Vazirani defines a reduction
informally as follows:
● “If any subroutine for task Q can be used to solve P, we say P reduces to Q.”

Can also define the idea formally, but way beyond the scope of our class.
● If you’re curious, you can read more about Karp and Cook reductions.

Reduction is more than sign flipping. Let’s see a richer example of a reduction.

https://en.wikipedia.org/wiki/Polynomial-time_reduction

Lecture 26, CS61B, Spring 2024

Topological Sorting
Shortest Paths on DAGs
Longest Paths
Reductions

• Definition
• Reduction to 3SAT (Optional

CS170 Preview)
Reductions:
Definition

The Independent Set Problem

An independent set is a set of vertices in which no two vertices are adjacent.

The Independent-set Problem:
● Does there exist an independent set of size k?
● i.e. color k vertices red, such that none touch.

Example for the graph on the right and k = 9
● For this particular graph, N=24.

Example: (x1 || x2 || !x3) && (x1 || !x1 || x1) && (x2 || x3 || x4)
● Solution: x1 = true, x2 = true, x3 = true, x4 = false

The 3SAT Problem

3SAT: Given a boolean formula, does there exist a truth value for boolean
variables that obeys a set of 3-variable disjunctive constraints?

3 variable disjunctive constraint

3SAT Reduces to Independent Set

Proposition: 3SAT reduces to Independent-set.

Proof. Given an instance ϕ of 3-SAT, create an instance G of Independent-set:
● For each clause in ϕ, create 3 vertices in a triangle.
● Add an edge between each literal and its negation (can’t both be true in 3SAT

means can’t be in same set in Independent-set)

Φ = (x1 or x2 or x3) and (! x1 or ! x2 or x4) and (! x1 or x3 or ! x4) and (x1 or x3 or x4)

x2

x1

x3 ! x2 x4

! x1

 ! x4 x3

! x1

x3

x1

x4

k = number of variables = 4

3SAT Reduces to Independent Set

Find an independent set of size k = 4. Use this set to generate a solution to the
3SAT problem.
● Reminder: An independent set of size 4 is a set of 4 (red) vertices that do not

touch.

Φ = (x1 or x2 or x3) and (! x1 or ! x2 or x4) and (! x1 or x3 or ! x4) and (x1 or x3 or x4)

x2

x1

x3 ! x2 x4

! x1

 ! x4 x3

! x1

x3

x1

x4

k = number of variables = 4

3SAT Reduces to Independent Set

Find an independent set of size k = 4. Use this set to generate a solution to the
3SAT problem.
● Reminder: An independent set of size 4 is a set of 4 (red) vertices that do not

touch.

Φ = (x1 or x2 or x3) and (! x1 or ! x2 or x4) and (! x1 or x3 or ! x4) and (x1 or x3 or x4)

x2

x1

x3 ! x2 x4

! x1

 ! x4 x3

! x1

x3

x1

x4

k = number of variables = 4

Reduction

Since IND-SET can be used to solve 3SAT, we say that “3SAT reduces to IND-SET”.
● Note: 3SAT is not a graph problem!
● Note: Reductions don’t always involve creating graphs.

3SAT

Preprocess IND-SET

G

IND-SET for G

Postprocess

Assignment so
that Φ gives true.

Φ

x1: true
x2: false
x3: false
x4: true

Reductions and Decomposition

Arguably, we’ve been doing something like a reduction all throughout the course.

These examples aren’t reductions exactly.
● We aren’t just calling a subroutine.
● A better term would be decomposition: Taking a complex task and breaking it

into smaller parts. This is the heart of computer science.
○ Using appropriate abstractions makes problem solving vastly easier.

Generational Changes in the Human Mind

http://www.youtube.com/watch?v=9vpqilhW9uI

